PRACTICE QUESTIONS FOR COMPETITIVE EXAMINATIONS

SUBJECT: MATHEMATICS

TOPIC: PROBABILITY

1.	Three vertices out of six vertices of a regular hexagon are chosen randomly.												
	The probability of getting a equilateral triangle after joining three vertices is -												
	(A) 1/5		(B) 1/20	F									
	(C) 1/10		(D) 1/2	A B									
2.	A quadratic equa	ntion is chosen from the set of	f all quadratic equations wh	nich are unchanged by squaring their									
	roots. The chan	ce that the chosen equation l	has equal roots is -										
	(A) 1/2	(B) 1/3	(C) 1/4	(D) 2/3									
3.	5 persons entered	I the lift cabin on the ground flo	or of an 8 floor building. Su	ppose that each of them independently									
	and with equal probability, can leave the cabin at any other floor, starting from the first. The probability that												
	all 5 persons leave at different floors is -												
	(5)5	8.0	E1	80.51									
	(A) $\left(\frac{5}{8}\right)^5$	(B) $\frac{^{3}C_{5}}{8^{5}}$	(C) $\frac{5!}{8^5}$	(D) $\frac{{}^{8}C_{5}5!}{{}^{9}}$									
4.	(0)	0		0									
	If the integers m and n are chosen at random between 1 and 100, then the probability that a number of the form $7^m + 7^n$ is divisible by 5 equals -												
			1	1									
	(A) $\frac{1}{4}$	(B) $\frac{1}{7}$	(C) $\frac{1}{8}$	(D) $\frac{1}{49}$									
5.	A determinant is chosen at random from the set of all determinant of order 2 with elements 0 or 1 only. The												
	probability that the determinant chosen has the value non negative is -												
	(A) 3/16	(B) 6/16	(C) 10/16	(D) 13/16									
6.	Lot A consists of	3G and 2D articles. Lot B co	nsists of 4G and 1D article	. A new lot C is formed by taking 3									
	articles from A and 2 from B. The probability that an article chosen at random from C is defective, is -												
	(A) 1/3	(B) 2/5	(C) 8/25	(D) none									
7.	Three numbers are chosen at random without replacement from {1, 2, 3,, 10}. The probability that the												
		chosen numbers is 3 or their m											
	(A) 1/2	(B) 1/3	(C) 1/4	(D) 11/40									
8.				ays. If the probability that 3 of them									
				K									
		dnesday, 2 on Thursday and th											
	(A) 15	(B) 30	(C) 105	(D) 210									

9.	Before a race the chance of three runners A, B & C were estimated to be proportional to 5, 3 & 2 respectively											
	but during the race A meets with an accident which reduces his chance to $1/3$. If the respective chances of B											
	and C are P(B) and	P(C) then -										
	(A) $P(B) = \frac{2}{5}$	(B) $P(C) = \frac{4}{15}$	(C) $P(C) = \frac{2}{5}$	<u>;</u> (I	D) $P(B) = \frac{4}{15}$							
10.	Let 0 < P (A) <	1, 0 < P (B) < 1 and P (A	\cup B) = P(A) + F	P(B) - P(A) P	(B). Then -							
	(A) $P\left(\frac{B}{A}\right) = P$	(B) - P (A)	(B) $P(A^{c} \cup B^{c}) = P(A^{c}) + P(B^{c})$									
	(C) P((A ∪ B) ^c) :	= P (A ^c) P (B ^c)	(D) F	$P\left(\frac{A}{B}\right) = P(A)$)							
11.	The probability that in n cycles is -	a radar will detect an object	in one cycle is p.	The probability	that the object will	be detected						
	(A) 1-p ⁿ	(B) $1-(1-p)^n$	(C) p ⁿ		(D) $p(1 - p)^{n-1}$							
12.	be late is 1/5. The A is late is 9/10.	B are scheduled to arrive at a probability that bus B will be Then the probabilities be late on a particular day a ven that bus B is late, are res	late is 7/25. The p									
	(A) 2/25 and 12/2	28 (B) 18/25 and 22/	28 (C) 7/10	and 18/28	(D) $12/25$ and 2	2/28						
13.	and 1 owl and Cag Shalu forgot to lock I to Cage-II. Then t Assume that all b	cages of birds : Cage-I conta e-II contains 6 parrots, as sho both cages and two birds flew wo birds flew back from Cage birds have equal chance of Owl is still in Cage-I, is - (B) 1/3 (D) 3/4	own. One day w from Cage- e-II to Cage-I.	Cage-I	Cag Birds like to fly	e-II						
14.	In a maths paper t	here are 3 sections A, B & 0	C. Section A is com	npulsory. Out of	sections B & C a s	tudent has						

to attempt any one. Passing in the paper means passing in A & passing in B or C. The probability of the student passing in A, B & C are p, q & 1/2 respectively. If the probability that the student is successful is 1/2 then, which of the following is false-

(A)
$$p = q = 1$$

9.

(B)
$$p = q = 1/2$$

(C)
$$p = 1$$
, $q = 0$

(A)
$$p = q = 1$$
 (B) $p = q = 1/2$ (C) $p = 1$, $q = 0$ (D) $p = 1$, $q = 1/2$

15. The number 'a' is randomly selected from the set {0, 1, 2, 3,.......98, 99}. The number 'b' is selected from the same set. Probability that the number 3a + 7b has a digit equal to 8 at the units place, is -

(C) $\frac{4}{16}$

(D) $\frac{3}{16}$

16. If $\overline{E} \& \overline{F}$ are the complementary events of events E & F respectively & if 0 < P(F) < 1, then -

(A) $P(E \mid F) + P(\overline{E} \mid F) = 1$ (B) $P(E \mid F) + P(E \mid \overline{F}) = 1$ (C) $P(\overline{E} \mid F) + P(E \mid \overline{F}) = 1$ (D) $P(E \mid \overline{F}) + P(\overline{E} \mid \overline{F}) = 1$

Comprehension

Let S and T are two events defined on a sample space with probabilities

P(S) = 0.5, P(T) = 0.69, P(S/T) = 0.5

On the basis of above information, answer the following questions :

17. Events S and T are -

(A) mutually exclusive

(B) independent

(C) mutually exclusive and independent

(D) neither mutually exclusive nor independent

18. The value of P(S and T) -

(A) 0.3450

(B) 0.2500

(C) 0.6900

(D) 0.350

19. The value of P(S or T) -

(A) 0.6900

(B) 1.19

(C) 0.8450

(D) 0

20. Consider 5 independent Bernoulli's trials each with probability of success p. If the probability of at least one failure is greater than or equal to $\frac{31}{32}$, then p lies in the interval :-

(1) $\left| 0, \frac{1}{2} \right|$

(2) $\left(\frac{11}{12}, 1\right)$

(3) $\left(\frac{1}{2}, \frac{3}{4}\right)$

 $(4) \left(\frac{3}{4}, \frac{11}{12}\right)$

ANSWERS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
С	Α	D	Α	Α	С	D	В	AB	CD	В	C	D	ABC	D	AD	В	Α	С	1